Chronic electrical stimulation homeostatically decreases spontaneous activity, but paradoxically increases evoked network activity.
نویسندگان
چکیده
Neural dynamics generated within cortical networks play a fundamental role in brain function. However, the learning rules that allow recurrent networks to generate functional dynamic regimes, and the degree to which these regimes are themselves plastic, are not known. In this study we examined plasticity of network dynamics in cortical organotypic slices in response to chronic changes in activity. Studies have typically manipulated network activity pharmacologically; we used chronic electrical stimulation to increase activity in in vitro cortical circuits in a more physiological manner. Slices were stimulated with "implanted" electrodes for 4 days. Chronic electrical stimulation or treatment with bicuculline decreased spontaneous activity as predicted by homeostatic learning rules. Paradoxically, however, whereas bicuculline decreased evoked network activity, chronic stimulation actually increased the likelihood that evoked stimulation elicited polysynaptic activity, despite a decrease in evoked monosynaptic strength. Furthermore, there was an inverse correlation between spontaneous and evoked activity, suggesting a homeostatic tradeoff between spontaneous and evoked activity. Within-slice experiments revealed that cells close to the stimulated electrode exhibited more evoked polysynaptic activity and less spontaneous activity than cells close to a control electrode. Collectively, our results establish that chronic stimulation changes the dynamic regimes of networks. In vitro studies of homeostatic plasticity typically lack any external input, and thus neurons must rely on "spontaneous" activity to reach homeostatic "set points." However, in the presence of external input we propose that homeostatic learning rules seem to shift networks from spontaneous to evoked regimes.
منابع مشابه
Machine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملEffect of locus ceruleus phasic electrical stimulation on responses of barrel cortical cells to controlled mechanical displacement in rats
Behavioral and electrophysiological evidences have shown that locus ceruleus (LC) is involved in different tasks including modulation of sensory processing and shift of attention. In the present study, single unit responses of barrel cortical cells was recorded following controlled mechanical displacement of the principal and peripheral vibrissae in adult rats (100 trials of 200 µm deflection f...
متن کاملChronic cold stress increases excitatory effects of norepinephrine on spontaneous and evoked activity of basolateral amygdala neurons.
Neurons of the amygdala respond to a variety of stressors. The basolateral amygdala (BLA) receives dense norepinephrine (NE) innervation from the locus coeruleus, and stressful and conditioned stimuli cause increases in NE levels within the BLA. Furthermore, chronic stress exposure leads to sensitization of the stress response. The actions of NE in different structures involved in the stress ci...
متن کاملEffects of visual deprivation on epileptic activity in mature rat visual cortex
Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...
متن کاملState changes rapidly modulate cortical neuronal responsiveness.
The responsiveness of cortical neurons is strongly and rapidly influenced by changes in the level of local network activity. In rodent somatosensory cortex, increases in network activity increase neuronal responsiveness to the intracellular injection of brief conductance stimuli but paradoxically decrease responsiveness to brief whisker deflections. However, whisker stimulation frequently evoke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 109 7 شماره
صفحات -
تاریخ انتشار 2013